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Abstract. For a prime p and an integer x, the p-adic valuation of
x is denoted by νp(x). For a polynomial Q with integer coefficients,
the sequence of valuations νp(Q(n)) is shown to be either periodic or
unbounded. The first case corresponds to the situation where Q has no
roots in the ring of p-adic integers. In the periodic situation, the exact
period is determined.

1. Introduction

For p prime and n ∈ N, the highest power of p that divides n is called
the p-adic valuation of n. This is denoted by νp(n). Given a function
f : N → N, the study of sequences νp(f(n)) goes back to at least Legendre
[16], who established the classical formula

(1.1) νp(n!) =
∞∑
k=1

⌊
n

pk

⌋
=
n− sp(n)

p− 1
,

where sp(n) is the sum of the digits of n in base p.
The work presented here forms part of a general project to analyze the

set
Vx = {νp(xn) : n ∈ N}

for given sequence x = {xn}. Examples of such sequences include the Stirling
numbers S(n, k) [3, 6], sequences satisfying first order recurrences [4], the
Fibonacci numbers [17], the ASM (alternating sign matrices) numbers [7,
21], coefficients of a polynomial connected to a quartic integral [2, 8, 18, 22].
Other results of this type appear in [1, 11, 12, 13, 20].

Consider the sequence of valuations

(1.2) Vp(Q) = {νp(Q(n)) : n ∈ N},
for a prime p and a polynomial Q ∈ Z[x]. The polynomial Q is assumed to
be irreducible over Z, otherwise the identity

(1.3) Vp(Q1Q2) = Vp(Q1) + Vp(Q2)

can be used to express Vp(Q) in terms of its irreducible factors. The main
result established here is that Vp(Q) is either periodic or unbounded. In the
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2 VALUATIONS OF POLYNOMIALS

case of a periodic sequence, the period is explicitly determined. The special
case of quadratic polynomials is discussed in detail.

The analysis includes the p-adic numbers Qp and the ring of integers Zp.
Recall that each x ∈ Qp can be expressed in the form

(1.4) x =
∞∑

k=k0

ckp
k

with 0 ≤ ck < p and ck0 6= 0.
The p-adic integers Zp correspond to the case k0 ≥ 0 and invertible el-

ements in this ring have k0 = 0. This set is denoted by Z×p . The p-adic

valuation of x ∈ Qp is defined by |x|p = p−k0 . In particular, x ∈ Z×p is
equivalent to x ∈ Zp and |x|p = 1.

The determination of the set Vp(Q) will require to examine the irreducibil-
ity of Q in Zp[x]. Some classical criteria are stated below.

Theorem 1.1 (Eisenstein criteria). Let f(x) = anx
n+· · ·+a1x+a0 ∈ Zp[x].

Assume
a) νp(an) = 0,
b) νp(aj) > 0 for 0 ≤ j < n,
c) νp(a0) = 1.
Then f is irreducible over Zp[x].

Theorem 1.2 (Hensel lemma, polynomial version). Let f ∈ Zp[x] and
assume there are non-constant polynomials g1, h1 ∈ Zp[x], such that
a) g1 is monic,
b) g1 and h1 are coprime modulo p and
c) f1(x) ≡ g1(x)h1(x) mod p.
Then f is reducible in Zp[x].

Theorem 1.3 (Dumas Irreducibility Criterion [14]). Let f ∈ Zp[x] be given
by

(1.5) f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an.

Suppose that

(1) νp(a0) = 0,
(2) νp(ai)/i > νp(an)/n for 1 ≤ i ≤ n− 1 and
(3) gcd(νp(an), n) = 1.

Then f is irreducible over Zp[x].

2. Boundedness of the set Vp(Q).

This section characterizes the boundedness of the set Vp(Q), in terms of
the existence of zeros of the polynomial Q in the ring of p-adic integers Zp.
Bell [5] showed that Vp(Q) is periodic and gave a bound for the minimal
period.
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Theorem 2.1. Let p be a prime and Q ∈ Z[x]. Then Vp(Q) is either periodic
or unbounded. Moreover, Vp(Q) is periodic if and only if Q has no zeros in
Zp. In the periodic case, the minimal period is a power of p.

Proof. Assume that Q has no zeros in Zp. If Vp(Q) is not bounded there
exists a sequence nj → ∞ such that νp(Q(nj)) → ∞. The compactness of
Zp (see [19]) gives a subsequence converging to n∞ ∈ Zp. Then Q(n∞) is
divisible by arbitrary large powers of p, thus Q(n∞) = 0. This contradiction
shows Vp(Q) is bounded. In order to show Vp(Q) is periodic, define

(2.1) d = sup
{
k : pk divides Q(n) for some n ∈ Z

}
.

Then d ≥ 0 and

(2.2) Q(n+ pd+1) = Q(n) +Q′(n)pd+1 +O(pd+2).

Since νp(Q(n)) ≤ d, it follows that

(2.3) νp

(
Q(n+ pd+1)

)
= νp(Q(n)),

proving that νp(Q(n)) is periodic. The minimal period is a divisor of pd+1,
thus a power of the prime p..

On the other hand, if Q has a zero x = α in Zp,

(2.4) Q(x) = (x− α)Q1(x), with Q1 ∈ Zp[x].

Then νp(Q(n)) ≥ νp(n− α), and Vp(Q) is unbounded. �

3. Hensel’s lemma

The criteria developed in Section 2 converts the boundedness of VQ to
the existence of zeros of Q in the ring of p-adic integers Zp. The most basic
analysis of this question involves Hensel’s lemma. In the form used here, it
states that a simple root of a polynomial modulo p, has a unique lifting to
a root in Zp.

Theorem 3.1. If f ∈ Z[x] and a ∈ Zp satisfies

(3.1) f(a) ≡ 0 mod p and f ′(a) 6≡ 0 mod p

then there is a unique α ∈ Zp such that f(α) = 0 and α ≡ a mod p.

The idea of the proof is simple: if α = c0 + c1p + c2p
2 + · · · is a root

of f(x) = 0 in Zp, it follows that f(α) ≡ 0 mod p. Write α = c0 + tp and
observe that

(3.2) f(α) = f(c0 + pt) = f(c0) + f ′(c0)pt+O(p2).

Therefore f(c0) ≡ 0 mod p is a necessary condition for α ∈ Zp to be a root
of f . Now (3.2) yields

(3.3) f ′(c0)t ≡ −
f(c0)

p
mod p.
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The assumption f ′(c0) 6≡ 0 mod p guarantees the existence of a unique so-
lution t = c1 with 0 ≤ c1 < p. The construction of the coefficients ci in
the expansion of the root α proceeds inductively, as explained next. Write
α = c0 + c1p+ tp2 and expand

(3.4) f(α) = f(c0 + c1p+ tp2) = f(c0 + c1p) + f ′(c0 + c1p)tp
2 +O(p3)

and check that f(α) ≡ 0 mod p2 requires

(3.5) f(c0 + c1p) + f ′(c0 + c1p)tp
2 ≡ 0 mod p3.

The choice of c1 guarantees f(c0 + c1p) ≡ 0 mod p2 and then f ′(c0 + c1p) ≡
f ′(c0) mod p, it follows that (3.5) is equivalent to

(3.6) f ′(c0)t ≡ −
f(c0 + c1p)

p2
mod p.

This equation has a unique solution t = c2 with 0 ≤ c2 < p and the process
can be continued indefinitely. This construction produces a sequence αk =
c0 + c1p+ · · ·+ ckp

k that converges to α ∈ Zp that solves f(α) = 0.

The following extension appears as Lemma 3.1 in [10].

Proposition 3.2. Assume f ∈ Z[x] and a ∈ Zp satisfies

(3.7) νp(f(a)) > 2νp(f
′(a)).

Then there is α ∈ Zp with α ≡ a mod p and f(α) = 0.

4. Quadratic polynomials and the prime p = 2

Let a ∈ Z and Qa(x) = x2 − a. This section considers the existence of a
zero of Qa in Z2. In view of Theorem 2.1, this is equivalent to the periodicity
of the sequence {ν2(n2−a)}. An elementary proof of Proposition 4.1 appears
in [9]. Define c and µ(a) by

(4.1) a = 4µ(a)c

with c 6≡ 0 mod 4.

Proposition 4.1. The polynomial Qa has no zeros in Z2 if and only if
c 6≡ 1 mod 8.

Proof. Assume first that Qa has no zeros in Z2 and c ≡ 1 mod 8. If a is odd,
then a = c = 1 + 8j with j ∈ Z. Then Qa(1) = 1− a = −8j and

(4.2) |Qa(1)|2 ≤ 1
8 and |Q′a(1)|2 = 1

2 .

Therefore |Qa(1)|2 < (|Q′a(1)|2)2 and Proposition 3.2 produces α ∈ Z2 with
Qa(α) = 0. This is a contradiction.

In the case a even, write a = 4i(1 + 8j) with i > 0 and i ∈ Z. The
previous case shows the existence of α ∈ Z2 with α2 = (1 + 8j). Then
β = 2iα satisfies Q2(β) = 0, yielding a contradiction.
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Assume now that c 6≡ 1 mod 8. If a is odd, then a = c and a ≡ 3, 5, 7 mod
8. A simple calculation shows that

(4.3) ν2(n
2 − 8i− 3) = ν2(n

2 − 8i− 7) =

{
1 if n is odd

0 if n is even ,

and

(4.4) ν2(n
2 − 8i− 5) =

{
2 if n is odd

0 if n is even .

For these values of a, the set V2(Q) is bounded. Theorem 2.1 now shows
that Qa has no zeros in Z2.

If a is even, then it can be written as a = 4j(8i+ r) with j ≥ 0 and r =
2, 3, 5, 6, 7. The excluded case r = 4 can be reduced to one of the residues
listed above by consideration of the parity of the index i. Now suppose
Qa(x) has a zero β ∈ Z2; that is, β2 = a = 4j(8i+ r). Then α = β/2j ∈ Z2

satisfies α2 = 8i+ r. Each of these cases lead to a contradiction. Indeed, if
r = 3, 5, 7 the valuations ν2(n

2−8i−r) are bounded contradicting Theorem
2.1. In the remaining two cases, the polynomial x2−8i−r is irreducible over
Z2 by a direct application of Einsenstein criterion [15, Proposition 5.3.11,
p. 156]. Therefore Qa(x) has no zeros. This concludes the proof. �

The previous result is now restated in terms of periodicity. The explicit
form of the period is given in Section 6.

Theorem 4.2. Let Q(x) = x2− a. Define c by the relation a = 4µ(a)c, with
c 6≡ 0 mod 4. Then the set V2(Q) is periodic if and only if c 6≡ 1 mod 8.

Combining Theorem 2.1, Proposition 4.1 and the classical result of La-
grange on representations of integers as sums of squares shows that the
sequence of valuations {ν2(n2 + b) : n ∈ N} is bounded if and only if b
cannot be written as a sum of three squares.

5. Quadratic polynomials and an odd prime

This section extends the results of Section 4 to the case of odd primes.

Theorem 5.1. Let p 6= 2 be a prime, and let a ∈ Z with k = νp(a). The

sequence νp(n
2− a) is periodic if and only if k is odd or a/pk is a quadratic

nonresidue modulo p. If it is periodic, its period length is pdk/2e.

Proof. Let p 6= 2. Hensel’s lemma shows that an integer a not divisible by
p has a square root in Zp if and only if a is a quadratic residue modulo
p. This implies that a ∈ Qp is a square if and only if it can be written as
a = p2mu2 with m ∈ Z and u ∈ Z×p a p-adic unit. Then x2 − a has a zero in

Zp is equivalent to k being even and a/pk being a quadratic residue modulo
p. This proves the first part of the theorem.
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Now assume that νp(n
2 − a) is periodic. It is shown that its period is

given by pdk/2e. Suppose first that k is odd. Let k∗ = (k + 1)/2 so that
dk/2e = k∗ and

(5.1) νp((n+ pk∗)2 − a) = νp(n
2 − a+ 2pk∗n+ p2k∗).

It is shown that

(5.2) νp(2p
k∗n+ p2k∗) > νp(n

2 − a),

which implies νp((n + pk∗)2 − a) = νp(n
2 − a). Write n = pνp(n)n0 and

a = p2k∗+1a0. Finally, let γ = min(νp(n), k∗). Then

νp

(
pk∗(2n+ pk∗)

)
≥ k∗ + min(νp(2n), k∗)(5.3)

= k∗ + γ

> k∗ + γ + νp(p
2νp(n)−k∗−γn20 − pk∗−1−γa0)

= νp(p
2νp(n)n20 − p2k∗−1a0)

= νp(n
2 − a)

since 0 > νp(p
2νp(n)−k∗−γn20 − pk∗−1−γa0). To justify this last inequality,

observe that if νp(n) ≥ k∗ then 2νp(n) − k∗ − γ = 2(νp(n) − k∗) ≥ 0 and
k∗ − 1 − γ = −1 < 0, and if ν < k∗ then 2ν − k∗ − γ = ν − k∗ < 0 and
k∗ − 1− γ ≥ 0.

Suppose now that k is even and a/pk a quadratic nonresidue. Then, there
is m ∈ N0 and a0 ∈ Z such that a = p2ma0 with a0 a quadratic non-residue
modulo p. It is now shown that

(5.4) νp((n+ pm)2 − a) = νp(n
2 − a)

and that pm is minimal with this property. If m = 0, then (5.4) becomes
νp((n+1)2) = νp(n

2−a). Both sides vanish since a is a quadratic non-residue
modulo p. Now, for m > 0, the statement (5.4) becomes

(n+ pm)2 − a = n2 + 2npm + p2m − p2ma0.

The proof of (5.4) is divided into cases. In the argument given below, it is
assumed that gcd(n, n0) = 1.

Case 1: Suppose that n = pβn0 with β, n0 ∈ Z and β < m. Observe that

νp(n
2 − a) = νp(p

2β − p2ma0) = 2β

and

νp(2p
mn+ p2m) = β +m > 2β.

Then νp((n+ pm)2 − a) = νp(n
2 − a) as claimed.

Case 2: Suppose that n = pmn0 with n0 ∈ Z. Note that

νp(n
2 − a) = νp(p

2m(n20 − a0)) = 2m,
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where the last equality follows from the fact that p does not divide n20 − a0,
since a0 is a quadratic non-residue modulo p. On the other hand,

νp((n+ pm)2 − a) = νp(p
2mn20 + 2p2mn0 + p2m − p2ma0)

= νp(p
2m[n20 + 2n0 + 1− a0])

= νp(p
2m[(n0 + 1)2 − a0])

= 2m.

This gives (5.4).

Case 3: Finally, suppose that n = pβn0 with β, n0 ∈ Z and β > m. It is
easy to see that νp(n

2 − a) = 2m. Then

(n+ pm)− a = n2 + 2pmn+ p2m − p2ma0
= p2βn20 + 2pm+βn0 + p2m − p2ma0
= p2m(p2β−2mn20 + 2pβ−m + (1− a0)).

Now 1− a0 6≡ 0 mod p since a0 is a quadratic non-residue. Therefore p does
not divide 1− a0 and (5.4) follows.

The conclusion is that νp((n+ pdk/2e)2− a) = νp(n
2− a) for every n ∈ N.

Therefore, the period is a divisor of pdk/2e. The period cannot be smaller,
since for n = 0

νp((n+ pi)2 − a) = νp(p
2i − a) = 2i 6= k = νp(−a) = νp(n

2 − a).

This completes the proof. �

6. The set Vp(Q) for a general irreducible monic polynomial

This section extends the results described in the last two sections to the
set

(6.1) Vp(Q) = {νp(Q(n)) : n ∈ N}

where p is a prime and Q is a monic polynomial, irreducible over the ring
of p-adic integers Zp.

The main result is described next. Bell [5] showed that Vp(Q) is periodic,
the next theorem provides the exact period.

Theorem 6.1. Let Q ∈ Z[x] be a monic polynomial of degree d ≥ 2, irre-
ducible over Zp. Let α ≥ 1 be the smallest non-negative integer such that
Q(x) ≡ 0 mod pα has no solutions. Then Vp(Q) is periodic of period length

pd
α−1
d e.

The proof of Theorem 6.1 is based on an expression for the valuation
νp(Q(n)).
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Theorem 6.2. Let Q, p and α as in Theorem 6.1. Let n0 ∈ Z such that

Q(n0) ≡ 0 mod pα−1. Define β =

⌊
α− 1

d

⌋
. Then

(6.2)

νp(Q(n)) =


d νp(n− n0) if n 6≡ n0 mod pβ,

dβ if n ≡ n0 mod pβ and n 6≡ n0 mod pβ+1,

α− 1 if n ≡ n0 mod pβ+1.

Proof. Write

(6.3) Q(x) = (x− r1)(x− r2) · · · (x− rd)
over a splitting field for Q. Let r = r1 and define K = Qp(r). Then K/Qp

is a field extension of degree d and the p-adic absolute value extends to K
by

(6.4) |s|p = |normK/Qp(s)|
1/d
p .

(See [15, Theorem 5.3.5]). The norm of an element s ∈ K is given by

(6.5) normK/Qp = (−1)meae0,

where xm + am−1x
m−1 + · · ·+ a1x+ a0 is the minimal polynomial of s over

Qp and e is the degree of the extension K/Qp(s).
For every integer n, the minimal polynomial of n− r is

(6.6) (x− (n− r1))(x− (n− r2)) · · · (x− (n− rd))
therefore

|n− r|p = |(n− r1) · · · (n− rd)|1/dp

= |Q(n)|1/dp

=
(
p−νp(Q(n))

)1/d
.

This gives

(6.7) νp(Q(n)) = −d logp |n− r|p
(where logp is the real logarithm to base p). Now take any n0 ∈ Z such that

Q(n0) ≡ 0 mod pα−1. Then

|n− r|p ≤ max{|n− n0|p, |n0 − r|p}

= max
(
|n− n0|p, p−νp(Q(n0))/d

)
= max

(
|n− n0|p, p−(α−1)/d

)
with equality if |n − n0|p 6= p−(α−1)/d. The computation of νp(Q(n)) from
(6.7) is divided into three cases (recall β =

⌊
α−1
d

⌋
):

Case 1 . If n 6≡ n0 mod pβ, then νp(n − n0) <
⌊
α−1
d

⌋
≤ α−1

d , and it follows
that

(6.8) |n− n0|p = p−νp(n−n0) > p−
α−1
d .
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Then |n− r|p = |n− n0|p and

(6.9) νp(Q(n)) = −d log |n− r|p = dνp(n− n0),
as claimed.

Case 2 . On the other hand, if n ≡ n0 mod pβ+1, then

(6.10) νp(n− n0) ≥
⌊
α− 1

d

⌋
+ 1 >

α− 1

d
,

and

(6.11) |n− n0|p = p−νp(n−n0) < p−
α−1
d .

In this case, |n− n0| = p−(α−1)/d and

(6.12) νp(Q(n)) = −d log |n− r|p = α− 1.

Case 3 . The final case is n ≡ n0 mod pβ and n 6≡ n0 mod pβ+1. Then
νp(n− n0) = β and therefore

(6.13) |n− n0|p = p−νp(n−n0 < p−
α−1
d .

If (α − 1)/d is not an integer, this implies |n − n0|p > p−(α−1)/d, so that
|n− r|p = |n− n0|p and

(6.14) νp(Q(n)) = −d logp |n− r|p = dνp(n− n0) = dβ.

On the other hand, if (α − 1)/d is an integer, |n − n0|p = p−(α−1)/d. Then

|n− r|p ≤ p−(α−1)/d and

(6.15) νp(Q(n)) = −d logp |n− r|p ≥ α− 1.

Since νp(Q(n)) ≤ α− 1 holds for all n ∈ Z, it follows that νp(Q(n)) = α− 1,
as claimed. �

The proof of Theorem 6.1 is presented next.

Take n0 ∈ Z with Q(n0) ≡ 0 mod pα−1 and recall β =
⌊
α−1
d

⌋
. Assume

first that α−1
d 6∈ Z. Theorem 6.2 shows that νp(Q(n)) depends only on the

residue of n modulo pβ+1. Therefore the period length of Vp(Q) is at most

pβ+1. Since (α− 1)/d is not an integer and

(6.16) νp

(
Q
(
n0 + pβ

))
= dβ 6= α− 1 = νp(Q)(n0),

the period length is not pβ. In the case α−1
d ∈ Z (equal to β), Theorem 6.2

gives

(6.17) νp(Q(n)) =

{
dνp(n− n0) if n 6≡ n0 mod pβ

α− 1 if n ≡ n0 mod pβ.

It follows that the period length of Vp(Q) is at most pβ. This is exactly the
period length, since

νp

(
Q
(
n0 + pβ−1

))
= dνp

(
pβ−1

)
= d(β − 1) 6= α− 1 = νp(Q(n0)).
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The expression for the period is easily seen to agree with the statement of
Theorem 6.1. The proof is complete.

7. Extension to the non-monic situation

This section discusses the set Vp(Q) for a general polynomial

(7.1) Q(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with coefficients in Zp.

Example 7.1. Let Q(x) = a1x + a0 with ak ∈ Zp. If a1 ∈ Z×p , write

Q(x) = a1Q1(x) with Q1(x) = x+ b0 and b0 = a−11 a0 ∈ Zp. Then

(7.2) νp(Q(n)) = νp(a1) + νp(Q1(n)) = νp(Q1(n)).

The situation has been reduced to the monic case.

The previous example extends to polynomials of higher degree in a natural
way.

Proposition 7.1. Let Q(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a
polynomial in Zp[x]. Assume an ∈ Z×p . Then Q(x) = anQ1(x) with Q1 ∈
Zp[x] monic and Vp(Q) = Vp(Q1).

Example 7.2. Let Q(x) = a2x
2 + a1x + a0 with ak ∈ Zp. If p does not

divide a2, then a2 is invertible and Vp(Q) can be reduced to the monic case
as explained above. Assume now that p divides a2. The discussion is divided
into three cases. It may be assumed that one of the coefficients ak is not
divisible by p. Otherwise, factoring the highest power of p appearing among
the coefficients, produces a shift in the set Vp(Q).

Case 1 . Suppose p divides a1 but not a0. Then p does not divide Q(n) and
Vp(Q) = {0}.

Case 2 . Assume p divides a0 but not a1. Then

(7.3) Q(0) ≡ 0 mod p and Q′(0) ≡ a1 6≡ 0 mod p.

Hensel’s lemma implies the existence of α ∈ Zp such that Q(α) = 0. Thus
Q is reducible. Since deg(Q) = 2, this implies Vp(Q) is unbounded.

Case 3 . Assume p does not divide either a1 nor a0. Define

(7.4) g(x) = x2Q(1/x) = a0x
2 + a1x+ a2

and observe that g(x) ≡ x(a0x + a1) mod p. Hensel’s lemma implies the
existence of polynomials g1, g2 ∈ Zp[x] with deg(g1) = deg(g2) = 1 and
g(x) = g1(x)g2(x). Then Q(x) = ĝ1(x)ĝ2(x), with ĝk(x) = xgk(1/x). This
implies that Q is reducible and, as in Case 2, Vp(Q) is unbounded.

Theorem 7.2. Let Q(x) = anx
n+an−1x

n−1+· · ·+a1x+a0 be a polynomial
in Zp[x] with an ≡ 0 mod p. Then the analysis of Vp(Q) can be reduced to
the monic case.
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Proof. Assume first that there is an index k such that p does not divide ak.
Otherwise factoring the maximal power of p produces a shift in Vp(Q). The
discussion is divided into two cases.

Case 1 . Suppose p|ak for k = 1, 2, · · · , n, but p does not divide a0. Then
νp(Q(n)) = 0 and Vp(Q) = {0}.

Case 2 . Let 0 < k < n be the largest index such that p does not divide ak.
Define

(7.5) g(x) = xnQ(1/x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an

then

(7.6) g(x) ≡ xn−k
(
a0x

k + a1x
k−1 + · · ·+ ak

)
mod p.

Hensel’s lemma implies the existence of q1, q2 ∈ Zp[x] with deg(q1) = k and
deg(q2) = n− k and g(x) = g1(x)g2(x). This shows that Q(x) is reducible.
The result now follows by induction on the degree of Q. The initial cases
deg(Q) = 1, 2 have been discussed above. �

Example 7.3. Consider Q(x) = 6x5 + x4 + 3x3 + x2 + 1 ∈ Z3[x]. Let
g(x) = x5Q(1/x) = x5+x3+3x2+x+6. Then g(x) ≡ x(x+1)2(x+2)2 mod 3.
Hensel Lemma produces polynomials

q1(x) = x+ γ0

q2(x) = x2 + β1x+ β0

q3(x) = x2 + λ1x+ λ0

with γ0, β0, β1, λ0, λ1 ∈ Zp such that g(x) = q1(x)q2(x)q3(x). In fact, the
first few iterations of Hensel Lemma yields (with p = 3):

γ0 = 2p+ 2p3 + p4 + 2p5 + 2p6 + 2p7 + p8 + p9 + p10 + · · ·
β0 = 1 + 2p+ p2 + p6 + 2p7 + 2p8 + p10 + · · ·
β1 = 2 + p+ 2p2 + p5 + 2p6 + p7 + p8 + 2p9 + · · ·
λ0 = 1 + p+ p2 + 2p3 + p7 + p10 + · · ·
λ1 = 1 + 2p+ 2p2 + 2p3 + 2p5 + p7 + 2p8 + p9 + · · · .

Therefore,

Q(x) = (γ0x+ 1)(β0x
2 + β1x+ 1)(λ0x

2 + λ1x+ 1) = q̂1(x)q̂2(x)q̂3(x).

Since p|γ0, it follows that ν3(q̂1(n)) = 0 for all n ∈ Z. After multiplica-
tion by β−10 , Theorem 6.1 implies that V3(q̂2) is periodic with fundamental
period {0, 0, 1}. Similarly, V3(q̂3) is periodic with fundamental period is
{0, 1, 0}. The conclusion is that V3(Q) is periodic with period length 3 and
fundamental period {0, 1, 1}.
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8. A collection of examples

This final section presents some examples that illustrate the results given
here. The analysis of the examples often requires to check the irreducibility
of the underlying polynomial.

The first collection of examples deals with quadratic polynomials. Theo-
rem 2.1 states that Vp(Q) is periodic if and only if Q has no zeros in Zp. For
polynomials of degree 2 or 3 the non-existence of zeros is equivalent to the
irreducibility of Q. In particular, if Q(x) = x2 − a, then writing a = 4µ(a)c,
with c 6≡ 0 mod 4, it was shown that Q is irreducible (equivalently V2(Q) is
periodic) if and only if c 6≡ 1 mod 8.

Example 8.1. Let Q(x) = x2 − 1. Then Q(1) = 0 and 1 ∈ Z2, so V2(Q) is
unbounded. The complete set V2(Q) is easy to determine. For n ∈ Z even,
ν2(n

2 − 1) = 0. Therefore 0 ∈ V2(Q). For n odd, written as n = 2αt + 1
with α ≥ 1 and t odd, the identity

(8.1) (2αt+ 1)2 − 1 = 2α+1t
(
2α−1t+ 1

)
shows that ν2(n

2 − 1) = α + 1 for α > 1. Therefore {3, 4, 5, · · · } ⊂ V2(Q).
In the case α = 1, the identity n2 − 1 = 22t(t + 1), implies ν2(n

2 − 1) ≥ 3.
Therefore

(8.2) V2(Q) = {0, 3, 4, 5, · · · }.

Example 8.2. Let Q(x) = x2 − 2. Eisenstein’s criteria shows that Q is
irreducible over Z2 and Theorem 4.2 shows that V2(Q) is periodic. The
congruence Q(x) ≡ 0 mod 2 has solutions but Q(x) ≡ 0 mod 22 does not.
Therefore α = 2 and Theorem 6.1 shows that V2(Q) has period 2. Indeed,
the fundamental period for V2(Q) is {0, 1}.

Example 8.3. The polynomial Q(x) = x2−32 has V2(Q) periodic of period
8. The basic period is {0, 2, 0, 4, 0, 2, 0, 5, 0, 2} and

(8.3) ν2(n
2 − 32) =


0 if n ≡ 1 mod 2

2 if n ≡ 2 mod 4

4 if n ≡ 4 mod 8

5 if n ≡ 5 mod 8.

Example 8.4. Using the notation in (4.1) observe that 68 = 4 · 17 and
17 ≡ 1 mod 8. Then Q(x) = x2 − 68 is reducible over Z2 and V2(Q) is
unbounded. The first few values of this sequence are given by

(8.4) {2, 0, 6, 0, 2, 0, 5, 0, 2, 0, 5, 0, 2, 0, 7}.

The reader might check that V2(Q) includes 0, 2 and every integer above 5.

The next example consider a quadratic polynomial and the prime p = 3.
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Example 8.5. Let Q(x) = x2 − 405. From 405 = 34 · 5 it follows that
k = ν3(405) = 4 is even. Moreover 405/34 = 5 and 5 is a quadratic non-
residue modulo 3. Theorem 5.1 shows that V3(Q) is periodic with period 9.
The fundamental period of this sequence is {4, 0, 0, 2, 0, 0, 2, 0, 0}.

The next series of examples involve polynomials of degree at least 3.

Example 8.6. Take Q(x) = x3 + 9x2 + 81x+ 243. Dumas’s criterion shows
that Q(x) is irreducible over Z3. A direct calculation yields α = 6, i.e.
Q(x) ≡ 0 mod 35 has solutions, but Q(x) ≡ 0 mod 36 does not. Theorem
6.1 implies that V3(Q) is periodic with period length 9. The reader can
verify that the fundamental period is given by {5, 0, 0, 3, 0, 0, 3, 0, 0}.

The explicit 3-adic valuation of Q(n) for n ∈ Z is provided by Theorem
6.2. In this case, β = 1 and choosing n0 = 0 gives

ν3(Q(n)) =


0 if n 6≡ 0 mod 3

3 if n ≡ 3, 6 mod 9

5 if n ≡ 0 mod 9.

Example 8.7. Now take Q(x) = x3 + 619x2 + 13137x + 49367. Apply
Dumas’s criterion to Q(x+ 2) to conclude that Q(x) is irreducible over Z5.
In this case α = 8 and Theorem 6.1 shows V5(Q) is periodic with period
length 125.

The explicit 5-adic valuation of Q(n) for n ∈ Z is provided by Theorem
6.2. In this case β = 2 and n0 can be chosen to be 2. Thus,

ν5(Q(n)) =


3 ν5(n− 2) if n 6≡ 2 mod 25

6 if n ≡ 2 mod 25 and n 6≡ 2 mod 125

7 if n ≡ 2 mod 125.

The valuation ν5(n− 2), for n 6≡ 2 mod 25, is now made explicit to produce

ν5(Q(n)) =


0 if n 6≡ 2 mod 5

3 if n ≡ 7, 12, 17, 22 mod 25

6 if n ≡ 27, 52, 77, 102 mod 125

7 if n ≡ 2 mod 125.

The last example offers an interesting twist, using the periodicity of Vp(Q)
to determine the irreducibility of the polynomial Q.

Example 8.8. Take Q(x) = x4 +x3 +x2 + 3x+ 3 ∈ Z3[x] and check α = 4.
It is claimed that Q is reducible over Z3[x]. Otherwise Theorem 6.1 shows
that V3(Q) is periodic of period 3. But V3(Q) = {1, 2, 0, 1, 3, 0, · · · } does
not have period 3 and Q is reducible. Now Q(x) ≡ x2(x + 2)2 mod 3 and
Hensel’s lemma implies that Q factors in the form

(8.5) Q(x) = (x2 + γ1x+ γ0)(x
2 + β1x+ β0)
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with γj , βj ∈ Z3. The polynomials are chosen so that

(8.6) x2 + γ1x+ γ2 ≡ x2 mod 3 and x2 + β1x+ β2 ≡ x2 + x+ 1 mod 3.

A direct application of Hensel’s lemma gives the expansions

γ0 = p+ p2 + p3 + 2p4 + 2p7 + 2p9 + · · ·
γ1 = 2p2 + 2p3 + p4 + p7 + 2p8 + · · ·
β0 = 1 + 2p+ 2p2 + p3 + 2p4 + p5 + p6 + p7 + · · ·
β1 = 1 + p2 + p4 + 2p5 + 2p6 + p7 + 2p9 + · · · ,

with p = 3. The reader can now check that V3(Q1) has period 3 and V3(Q2)
has period 9. It follows that V3(Q) is periodic is period 9 with fundamental
period is {1, 2, 0, 1, 3, 0, 1, 2, 0}.

Example 8.9. Take p = 3 and Q(x) = 27x5+x4+2x3+x2+3x+9 ∈ Z3[x].
Then Q(x) ≡ x2(x2 + 2x+ 1) mod 3. Hensel Lemma implies the existence of
polynomials Q1(x), Q2(x) ∈ Z3[x] with deg(Q1) = 2 and deg(Q2) = 3 such
that Q(x) = Q1(x)Q2(x). Indeed, the first iterations of Hensel’s Lemma
produce Q1(x) = x2 + γ1x+ γ0 and Q2(x) = 27x3 + β2x

2 + β1x+ β0 where

γ0 = p2 + 2p3 + p4 + 2p5 + p7 + p9 + · · ·
γ1 = p+ p4 + 2p5 + 2p6 + p7 + 2p8 + p9 + · · ·
β0 = 1 + p+ 2p2 + 2p4 + 2p6 + p7 + 2p8 + 2p9 + · · ·
β1 = 2 + 2p+ 2p2 + 2p3 + p4 + p6 + 2p7 + 2p8 + p9 + · · ·
β2 = 1 + 2p4 + 2p5 + 2p6 + p7 + · · · ,

with p = 3.
Theorem 6.1 implies that V3(Q1) is periodic with period length 9. De-

fine now Q̂2(x) = x3Q2(1/x) and observe that Q̂2(x) ≡ x(1 + x)2 mod
3. Hensel’s lemma now gives polynomials q̂1(x), q̂2(x) ∈ Z3[x] such that

Q̂2(x) = q̂1(x) q̂2(x) with deg(q̂1) = 1, deg(q̂2) = 2. An approximation of
q̂1(x) = x+ λ0 and q̂2(x) = ω2x

2 + ω1x+ ω0 is

λ0 = p3 + 2p6 + p9 + · · ·
ω0 = 1 + p3 + 2p4 + 2p5 + 2p6 + p7 + 2p8 + p9 + · · ·
ω1 = 2 + 2p+ 2p2 + p3 + p5 + p6 + · · ·
ω2 = 1 + p+ 2p2 + 2p4 + 2p6 + p7 + 2p8 + 2p9 + · · · .

Then Q2(x) = x3Q̂2(1/x) = (λ0x + 1)(ω0x
2 + ω1x + ω2) = q1(x)q2(x).

Observe that ν3(q1(n)) = 0 for all n ∈ Z. Theorem 6.1 gives that V3(q2) is
periodic with period length 3. The conclusion is that V3(Q) is periodic with
period 9 and fundamental period {2, 0, 1, 4, 0, 1, 2, 0, 1}.
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