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Abstract. We provide a geometric interpretation of a new rational Landen
transformation and establish the convergence of its iterates.

1. Introduction

The transformation theory of elliptic integrals was initiated by Landen in [6, 7],
wherein he proved the invariance of the function

G(a, b) =
∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

(1.1)

under the transformation

a1 =
a+ b

2
b1 =

√
ab.(1.2)

Gauss [4] rediscovered this invariance in the process of calculating the arclength of
a lemniscate. The limit of the sequence (an, bn) defined by iteration of (1.2) is the
celebrated arithmetic-geometric mean AGM(a, b) of a and b. The invariance of the
elliptic integral (1.1) leads to

π

2 AGM(a, b)
= G(a, b).(1.3)

General information about AGM and its applications is given in [3]. A geometric
interpretation of the transformation (1.2) is given in [5].

A transformation analogous to the Gauss-Landen map (1.2) has been given in
[1] for the rational integral

U6(a1, a2; b0, b1, b2) =
∫ ∞

0

b0z
4 + b1z

2 + b2
z6 + a1z4 + a2z2 + 1

dz.(1.4)
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Indeed, the integral U6 is invariant under the transformation

a
(1)
1 =

a1a2 + 5a1 + 5a2 + 9
(a1 + a2 + 2)4/3

(1.5)

a
(2)
2 =

a1 + a2 + 6
(a1 + a2 + 2)2/3

b
(1)
0 =

b0 + b1 + b2
(a1 + a2 + 2)2/3

b
(1)
1 =

b0(a2 + 2) + 2b1 + b2(a1 + 3)
a1 + a2 + 2

b
(1)
2 =

b0 + b2
(a1 + a2 + 2)2/3

.

This transformation was obtained by a sequence of elementary changes of vari-
ables and the convergence of

(an,bn) := (a(n)
1 , a

(n)
2 , b

(n)
0 , b

(n)
1 , b

(n)
2 ).

For any initial data (a0,b0) ∈ R2
+ × R3

+ there exists a number L, depending upon
the initial condition, such that

(an,bn) −→ (3, 3, L, 2L,L),(1.6)

so that

U6(an,bn) −→ L× π

2
.(1.7)

The invariance of U6 under (1.5) shows that

U6(a0,b0) = L× π

2
.(1.8)

Therefore the iteration given above becomes an iterative form of evaluating the
integral.

The main result of [2], quoted below, is an extension of (1.5) for an even inte-
grand.

Theorem 1.1. Let R(z) = P (z)/Q(z) with

P (z) =
p−1∑
j=0

bjz
2(p−1−j) and Q(z) =

p∑
j=0

ajz
2(p−j).(1.9)

Define aj = 0 for j > p, bj = 0 for j > p− 1,

dp+1−j =
j∑

k=0

ap−kaj−k(1.10)

for 0 ≤ k ≤ p− 1,

d1 =
1
2

p∑
k=0

a2
p−k,(1.11)

cj =
2p−1∑
k=0

ajbp−1−j+k(1.12)
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for 0 ≤ j ≤ 2p− 1, and

αp(i) =

{
22i−1

∑p+1−i
k=1

k+i−1
i

(
k+2i−2
k−1

)
dk+i if 1 ≤ i ≤ p

1 +
∑p
k=1 dk if i = 0.

(1.13)

Let

a+
i =

αp(i)
22iQ(1)2(1−i/p)(1.14)

for 1 ≤ i ≤ p− 1, and

b+i = Q(1)2i/p+1/p−2 ×

[
p−1−i∑
k=0

(ck + c2p−1−k)
(
p− 1− k + i

2i

)]
(1.15)

for 0 ≤ i ≤ p− 1. Finally, define the polynomials

P+(z) =
p−1∑
k=0

b+i z
2(p−1−i) and Q+(z) =

p∑
k=0

a+
i z

2(p−i).(1.16)

Then ∫ ∞
0

P (z)
Q(z)

dz =
∫ ∞

0

P+(z)
Q+(z)

dz.(1.17)

The proofs in [1, 2] are elementary but lack a proper geometric interpretation.
In particular, the proof of (1.6) given in [1] could not be extended even for degree
8 in view of the formidable algebraic difficulties. The goal of this paper is to show
that the transformation (1.14, 1.15) is a particular case of a general construction:
the direct image of a meromorphic 1-form under a rational map. This will allow us
to prove an analogue of (1.6,1.8) for the integral

U2p(a,b) :=
∫ ∞

0

b0z
2p−2 + b1z

2p−4 + · · ·+ bp
z2p + a1z2p−2 + · · ·+ 1

dz.(1.18)

In fact, we prove that the sequence xn starting at

x0 = (a1, · · · , ap−1; b0, · · · , bp−1)

and defined by xn+1 = x+
n satisfies

xn →
((

p

1

)
,

(
p

2

)
, · · · ,

(
p

p− 1

)
;
(
p− 1

0

)
L,

(
p− 1

1

)
L, · · · ,

(
p− 1
p− 1

)
L

)
,

where

L =
2
π
U2p(a,b).

Moreover the convergence of the iteration is equivalent to the convergence of the
initial integral.
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2. The direct image of a 1-form

Let π : X → Y be a proper analytic mapping of Riemann surfaces (i.e., a finite
ramified covering space), and ϕ be a tensor of any type on X. Then π∗ϕ is the
tensor of the same type on Y , defined as follows: Let U ⊂ Y be a simply connected
subset of Y containing no critical value of π, and let σ1, · · · , σk : U → X be the
distinct sections of π. Then the direct image of π∗ϕ is defined by

π∗ϕ
∣∣∣
U

=
k∑
i=1

σ∗i ϕ.(2.1)

This defines π∗ϕ except at the ramification values of π, where π∗ϕ may acquire
poles even if ϕ is holomorphic.

We will be applying this construction in the case where ϕ is a holomorphic
1-form, and in this case π∗ϕ is analytic.

Lemma 2.1. If π : X → Y is proper and analytic as above, and ϕ is an analytic
1-form on X, then π∗ϕ is an analytic 1-form on Y . Furthermore, for any oriented
rectifiable curve γ on Y , we have∫

γ

π∗ϕ =
∫
π−1γ

ϕ.

Proof. The only problem is to show that π∗ϕ is holomorphic at the critical values.
It is clearly enough to show that the contribution of a neighborhood of a single
critical point is holomorphic. Thus we may assume that π(z) = w = zm for some
m, and that

ϕ = (akzk + ak+1z
k+1 + . . . )dz,

with k ≥ 0.
For i = 0, . . . ,m− 1 set σi(w) = ζiσ0(w), where ζ = e2πi/m and σ0(w) = w1/m

for some branch of the 1/m power, for instance the one where the argument is
between 0 and 2π/m. Then

π∗(zkdz) =

{
0 if k + 1 is not divisible by m
u(k+1−m)/mdu if k + 1 is divisible by m.

(2.2)

Thus the first term of the power series for ϕ to contribute anything to π∗ϕ is the
term of degree m− 1, and it contributes to the constant term; similarly, the terms
of degree 2m− 1, 3m− 1, . . . contribute to the terms of degree 1, 2, . . . , all positive
powers.

This has a useful corollary. Recall that the degree of a meromorphic function
is the maximum of the degrees of the numerator and the denominator when the
rational function is written in reduced form.

Lemma 2.2. If π : P1 → P
1 is analytic, and ϕ = R(z)dz is a meromorphic 1-

form on P1 so that R is a rational function of degree k, then π∗ϕ can be written as
R1(z)dz, where R1 is a rational function of degree at most k.

Proof. By Lemma 2.1, the number of poles of π∗ϕ is at most equal to the number
of poles of ϕ, and clearly the orders of the poles cannot increase either.

Note. It is quite possible for the degree of π∗ϕ to be less than the degree of
ϕ. This can happen in two ways: we might have poles at two points z1, z2 such



LANDEN TRANSFORMATIONS 5

that π(z1) = π(z2), and then the polar parts at these points could cancel. We may
also have a pole of order > 1 at a critical point, and then the order of the pole
at the corresponding critical value will be less (in fact, the pole might disappear
altogether).

3. A particular branched cover

We will be concerned with the specific map

π(z) = w :=
z2 − 1

2z
.(3.1)

This mapping can also be viewed as the Newton map associated to the equation
z2 + 1 = 0. As such it has ±i as superattractive fixed points, and π is conjugate to
F (z) = z2 via the Mobius transformation M(z) = (z + i)/(z − i); indeed M ◦ π ◦
M−1 = F .

Let us list some properties of π.

Lemma 3.1. If ϕ has no poles on R ⊂ P1, then∫ ∞
−∞

ϕ =
∫ ∞
−∞

π∗ϕ.

Proof. If ϕ has no poles on R (including at infinity), then the integral converges.
Since π maps the real axis (including ∞) to itself as a double cover, the result
follows from Lemma 2.1.

Let τ : P1 → P
1 be the map z 7→ −z. Then clearly π ◦ τ = τ ◦ π. Call ϕ even if

τ∗ϕ = ϕ, and odd if τ∗ϕ = −ϕ.

Note. When ϕ = R(z) dz with R a rational function, then ϕ is even if and only if
R is odd, and ϕ is odd if and only if R is even, since dz is odd.

Lemma 3.2. We have the following identities:
(a)

π∗π∗ϕ = ϕ+ τ∗ϕ.

(b) If ϕ is even, then π∗ϕ = 0.
(c) If ϕ is odd, then π∗ϕ is also odd.

Thus we can restrict our attention to odd 1-forms. Below we calculate π∗(R(z) dz),
where R(z) is an even rational function. We will only consider the case when the
numerator of R has degree at least 2 less than the denominator, as this avoids a
pole at infinity which would prevent the integral over R from converging.

The explicit evaluations of the form π∗ϕ described below were conducted using
Mathematica. The corresponding sections are

σ±(w) = w ±
√
w2 + 1,(3.2)

so that for ϕ = Φ(z)dz we have

π∗ϕ = Φ(σ+(w))
dσ+

dw
+ Φ(σ−(w))

dσ−
dw

.(3.3)

The calculations are formidable.
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Example 1. Let

ϕ =
b0

a0z2 + a1
dz.(3.4)

Then

π∗ϕ =
2b0(a0 + a1)

4a0a1w2 + (a0 + a1)2
dw.(3.5)

Observe that the new 1-form can be written as

π∗ϕ = b0 ×
A(a0, a1)

G2(a0, a1)w2 +A2(a0, a1)
dw,(3.6)

where A(a, b) and G(a, b) are the arithmetic and geometric means of a and b re-
spectively.

Example 2. The form

ϕ =
b0z

2 + b1
a0z4 + a1z2 + a2

dz(3.7)

is transformed into

π∗ϕ =
8(a2b0 + a0b1)w2 + 2(a0 + a1 + a2)(b0 + b1)

16a0a2w4 + 4(a0a1 + 4a0a2 + a1a2)w2 + (a0 + a1 + a2)2
dw.

4. The convergence of (π∗)nϕ

In this section we present the principal theorem of the paper.

Theorem 4.1. Let ϕ be a 1-form, holomorphic on a neighborhood U of R ⊂ P1.
Then

lim
n→∞

(π∗)nϕ =
1
π

(∫ ∞
−∞

ϕ

)
dz

1 + z2
,

where the convergence is uniform on compact subsets of U .

Proof. We find it convenient to prove this for the map F (z) = z2, which is conjugate
to π. In that form, the statement to be proved is that if ϕ is analytic in some
neighborhood U of the unit circle, then

lim
n→∞

(F∗)nϕ =
1

2πi

(∫
S1
ϕ

)
dz

z
.

Any such 1-form ϕ can be developed in a Laurent series

ϕ =

( ∞∑
k=−∞

akz
k

)
dz

z
,

where
∑∞
k=1(|ak|+ |a−k|)ρk <∞ for some ρ > 1. Note that

a0 =
1

2πi

∫
S1
ϕ.

In this form it is very easy to compute F∗ϕ.
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Lemma 4.2. The mapping F∗ on 1-forms is given by

F∗ϕ =
∞∑

k=−∞

a2kz
k dz

z
.

Proof. This is what was computed in Equation 2.2.

Thus in the “basis” of forms zk dzz , the vector corresponding to k = 0 is an
eigenvector with eigenvalue 1, and the rest of the space is nilpotent:

(F∗)mzk
dz

z
= 0

if m is greater than the greatest power of 2 which divides k. This comes close to
proving Theorem 4.1, but it doesn’t quite; for instance( ∞∑

k=0

zk

)
dz

z
=

dz

z(1− z)

is also fixed under F∗. We cannot argue merely in terms of formal Laurent series:
convergence must be taken into account.

But this is not too hard. Consider the region UR defined by 1
R < |z| < R, and

the space AR of analytic 1-forms

ϕ =

( ∞∑
k=−∞

akz
k

)
dz

z

on UR such that

‖φ‖ = |a0|+
∞∑
k=1

(|ak|+ a−k|)Rk <∞.

We then have

‖πn∗ϕ− a0
dz

z
‖ =

∞∑
k=1

(|a2nk|+ |a−2nk|)Rk

=
∞∑
k=1

(|a2nk|+ |a−2nk|)R2nk Rk

R2nk

≤ R

R2n
‖ϕ‖.

This certainly shows that πn∗ϕ−a0
dz
z tends to 0, in fact very fast: it superconverges

to 0.

5. Normalization of the integrands

In the previous section we have produced a map π∗ of 1-forms φ = R(z) dz that
does not increase the degree and the integral over [0,∞]. Moreover, we have seen
that the integrands πn∗ϕ converge as n tends to infinity. This doesn’t quite tell us
about the convergence of the coefficients of R, because of possible common factors
and cancellations. Here we normalize the rational functions so that π∗ induces a
convergent iteration on the coefficients.
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We will write the integrands so that their denominators are monic and with con-
stant term equal to 1. The latter can be achieved by factoring the constant term
out while the former is obtained by a change of variable of the form z 7→ λz, with
an appropriate λ.

Example 1. For rational functions of degree 2 we obtain

∫ ∞
0

b0
a0z2 + a1

dz =
∫ ∞

0

2b0(a0 + a1)
4a0a1w2 + (a0 + a1)2

dw.(5.1)

This is an identity: both sides normalize to

b0√
a0a1

×
∫ ∞

0

dx

x2 + 1
.(5.2)

Example 2. The quartic case yields

∫ ∞
0

b0z
2 + b1

a0z4 + a1z2 + a2
dz =

∫ ∞
0

b
(1)
0 w2 + b

(1)
1

a
(1)
0 w4 + a

(1)
1 w2 + a

(1)
2

dw,(5.3)

where

b
(1)
0 = 8(a2b0 + a0b1)(5.4)

b
(1)
1 = 2(a0 + a1 + a2)(b0 + b1)

a
(1)
0 = 16a0a2

a
(1)
1 = 4(a0a1 + 4a0a2 + a1a2)

a
(1)
2 = (a0 + a1 + a2)2.

The normalization shows that the integral∫ ∞
0

b0a
1/2
2 z2 + b1a

1/2
0

z4 + a
−1/2
0 a1a

−1/2
2 z2 + 1

dz

equals

(a0 + a1 + a2)−1/2×

∫ ∞
0

(a2b0 + a0b1)w2 + (b0 + b1)a1/2
0 a

1/2
2

w4 + [a0a1 + 4a0a2 + a1a2)a−1/2
0 a

−1/2
2 (a0 + a1 + a2)−1]w2 + 1

dw.

Naturally this identity can be verified directly using∫ ∞
0

dx

x4 + 2ax2 + 1
=
∫ ∞

0

x2 dx

x4 + 2ax2 + 1
=

π

23/2
√
a+ 1

.

Example 3. In the case of degree 6 we obtain



LANDEN TRANSFORMATIONS 9

∫ ∞
0

b0z
4 + b1z

2 + b2
a0z6 + a1z4 + a2z2 + a3

dz =
∫ ∞

0

b
(1)
0 w4 + b

(1)
1 w2 + b

(1)
2

a
(1)
0 w6 + a

(1)
1 w4 + a

(1)
2 w2 + a

(1)
3

dw,

(5.5)

where

b
(1)
0 = 32(a3b0 + a0b2)(5.6)

b
(1)
1 = 8(a2b0 + 3a3b0 + a0b1 + a3b1 + 3a0b2 + a1b2)

b
(1)
2 = 2(a0 + a1 + a2 + a3)(b0 + b1 + b2)

a
(1)
0 = 64a0a3

a
(1)
1 = 16(a0a2 + 6a0a3 + a1a3)

a
(1)
2 = 4(a0a1 + 4a0a2 + a1a2 + 9a0a3 + 4a1a3 + a2a3)

a
(1)
3 = (a0 + a1 + a2 + a3)2.

The normalization of (5.5) yields (1.5).
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