
RAABE’S THEOREM FOR BERNOULLI POLYNOMIALS

The Bernoulli polynomials have the generating function
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was established in a previous note.

The generalization presented below is due to Raabe:

Theorem 1. The Bernoulli polynomials satisfy the identity
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Compute the generating function of the right-hand side as
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with s = t/r. The last expression can be written as
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and comparing coefficients of tn gives
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This gives the result.

In the case r = 3 the identity gives
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The relation Bn(1− x) = (−1)nBn(x) gives
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and the using this on the right-hand side of (8) produces

(10)
(

31−n
− 1

)

Bn = (1 + (−1)n)Bn

(

1
3

)

.

This says nothing for n odd, but for n even it gives
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Theorem 2. The Bernoulli polynomials satisfy
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Question:What about the case n odd?

Now take r = 4 in Raabe’s theorem to obtain
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The special case x = 0 gives
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The use
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The case n odd gives no information and the case n gives
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Theorem 3. The Bernoulli polynomials satisfy
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